Group 7: Data Analysis & Visualization

Tanmayi Dasari, Sebastian Hazlett, Claire Lee, Dorothy Zhang, Alex Miller

Background/Scope

Overall Goal

We program the server to receive LoRa communication, process the received Lake Miramar buoy sensor data, analyze it and make conclusions & cool models.

Groups 5,6	\$7					
Info Flow 5	67					t-collect
PH Tre J.	SON RX -> LoRg -MC	mt-	-> (.1-	× 50	A LITE
GPS "ESP37"	· · ·		"//<	al B ¹¹	DE	3
Time?					Dec	hhard
Time? Buoy Izc 7	SHORE				Dae	hboard

	avity	B	_			21					к 28		1
	· · ·	Кезропаше	10	10	20	21	~~	25	20	21	20	20	É
	7.1 Data Storage		-										
	7.1.1 Create the Database	Whole Team	_	_									
	7.1.1.1 Determine database software to use - SQLite	Whole Team											
	7.1.1.2 Map the data tables and types	Whole Team		_									
	7.1.1.3 Create the tables	Whole Team		-									
	7.1.1.4 Populate and test with dummy data	Claire	-		_								
	7.1.2 Data Transfer												
		Team 7 and 6	-	_									
	7.1.2.1 Set the transfer data format DONE	Alex											
	7.1.2.2 Read data from serial connection DONE	Sebastian			_								
	7.1.2.3 Verify data formatting DONE	Sebastian											
	7.1.2.4 Log the processes DONE	Sebastian				1							
	7.1.2.5 Write data to the database DONE	Sebastian Alex											
	7.2 Live Data Feed												
	7.2.1 Determine libaries to use												
	7.2.2 Setup development environment	Whole Team											
	7.2.3 Mock up the dashboard interface	Dorothy Tanmayi				_							
)	7.2.4 Read data from the database	Dorothy Tanmayi											
)	7.2.5 Code visualizations	Dorothy Tanmayi											
	7.2.6 Code automatic refreshing	Dorothy Tanmayi											
2	7.3 Testing												
3	7.3.1 Merge with telemetry and data acquistion	Whole Team											
1	7.3.2 Test all processes in lab	Whole Team											
5	7.3.3 Iterate designs/code based on test results	Whole Team			_						_		
5	7.3.4 Test all processes in pool	Whole Team											
r	7.3.4 Iterate designs/code based on test results	Whole Team											
	7.4 Collect Data from Miramar Lake												
)	7.5 Data Analysis												
)	7.5.1 Determine locations to survey	Teams 6 and 7											
	7.5.2 Determine libaries to use	Claire Alex											
2	7.5.3 Setup development environment	Claire Alex											
3	7.5.4 Source real data from past surveys	Claire Alex											
\$	7.5.5 Read data from database	Claire Alex											
5	7.5.6 Exploratory Data Analysis	Claire Alex											
5	7.5.6.1 Correlations	Claire Alex											
7	7.5.6.2 Histograms, box-whisker charts, summary statistics	Claire Alex											
3	7.5.6.3 Heatmaps based on location	Claire Alex											
€	7.5.7 Modeling	Whole Team											
٩.	7.5.7.1 K-means to group data points based on location	Claire Alex											
	7.5.7.2 Ordinary least squares and ANOVA	Claire Alex											
	5.8 Analysis and Conclusions	Claire Alex											

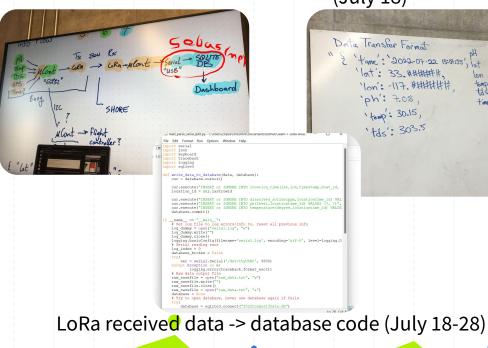
Gantt Chart

Procedure/Challenges

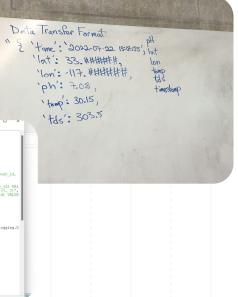
Base station (July 15-19)

Set up base station server with Linux

Hardware


ront

CAD/3D Printing (July 21-22)


esp32 box & chinchou receiver case

LoRa \rightarrow Server Groundwork (July 18-26)

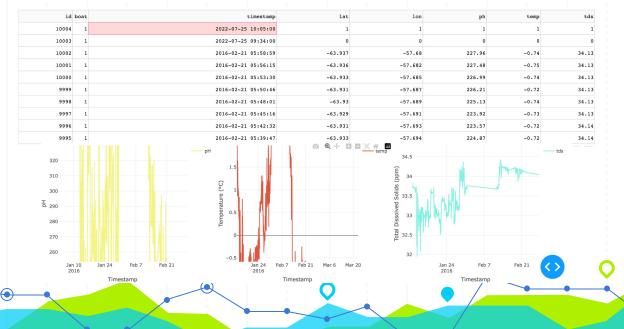
My task: take sensor data in serial from LoRa microcontroller into server (July 18)

Data transfer format (July 18)

Rapid prototyping to make the radio-to-stand connector by 3D print, with the radio connecting to LoRa and the server (July 20-21)

Testing the radio (July 26)

Database


Loaded the dummy sensor data to database using DB Browser for SQLite

New Database	Gen Database	🕞 Write Char		t Changes	🎯 Open Project	
	Database Structur	Browse Dat	a Edit Pragmas	Execute SQL		
Create Table	🗞 Create Index	Print				
ате		Туре	Schema			
Tables (6)						
🗸 📃 bost			CREATE TABLE "boat"	"id" INTEGER NOT	NULL UNIQUE, "name" TE>	T, PRIM
Ja 🔒		INTEGER	"Id" INTEGER NOT NUL	L UNIQUE		
name			"name" TEXT			
V dissolved_so	lids				TEGER NOT NULL UNIQUE	"ppm"
🧕 id		INTEGER	"id" INTEGER NOT NUL			
ppm		REAL	"ppm" REAL NOT NULL			
a location		INTEGER	"locationtime_id" INTE			
V 🔄 location_tim					SER NOT NULL UNIQUE, "la	t" REAL
🧕 id		INTEGER	"id" INTEGER NOT NUL	L UNIQUE		
lat		REAL	"lat" REAL			
lon		REAL	"Ion" REAL			
timestan	P	TEXT	"timestamp" TEXT			
🔬 bost_id		INTEGER	"boat_id" INTEGER NO			
~ 🧾 ph					ULL UNIQUE, "level" REAL I	NOT NU
Ja 🛃		INTEGER	"Id" INTEGER NOT NUL			
level		REAL	"level" REAL NOT NULL			
all locations		INTEGER	"locationtime_id" INTE			
V 🔄 sqlite_seque	nce		CREATE TABLE sqlite_s	equence(name,seq)		
name			"name"			
> Temperature			"seq"		ER NOT NULL UNIQUE, "de	
_			GREATE TABLE Tempe	ature (-30° INTEG	ER NOT NOLE UNIQUE,"de	Bine, Ki
Indices (0) Views (0)						

$Database \rightarrow Dashboard$

Dashboard

Used Pandas to access the SQL database and create Plotly formatted dataframe. Used Plotly Dash library to create datable, scatterplot map, and line graphs

Buoy-Server LoRa Pipeline In Action (July 25-29)

Visualizing the movement of our buoy+boat on Lake Miramar on server via GPS Radio communication read on Friday test day (July 29)

from LoRa serial into command line (July 26)

LoRa bad output

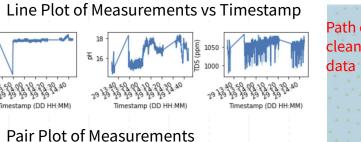
because of a miswiring

in the sending buoy

(July 25)

lenal bester de la cocada y second

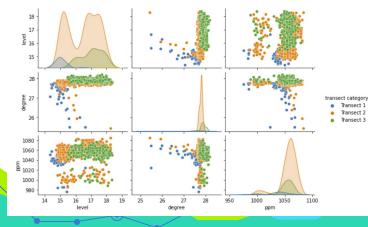
Basestation with live dashboard (July 29)



Findings & Conclusions

Data Analysis

- Path of cleaned data


Dip in level vs level Ppm vs ppm seems like it could be normal

Exploratory Data Analysis

© 28

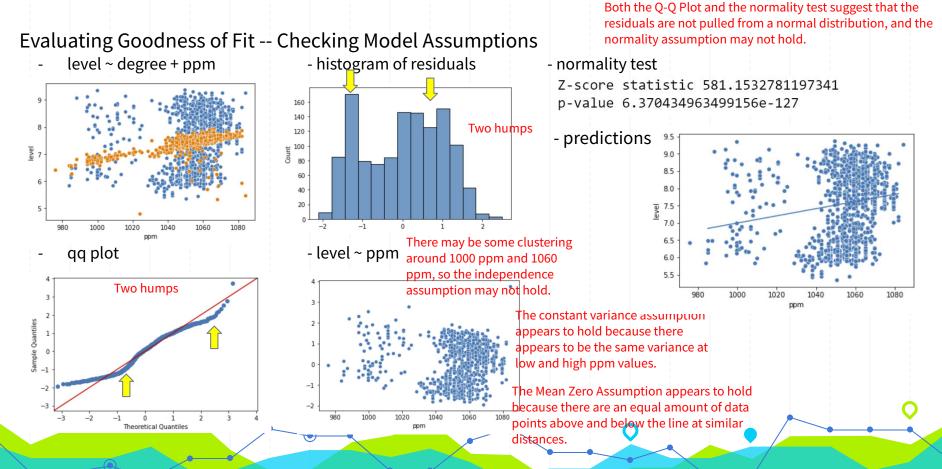
a 26

ature

- Correlation Plot of Measurements

correlat	ion is 0.2	level	degree	ppm
	level	1.00	0.20	0.19
	degree	0.20	1.00	-0.03
	ppm	0.19	-0.03	1.00

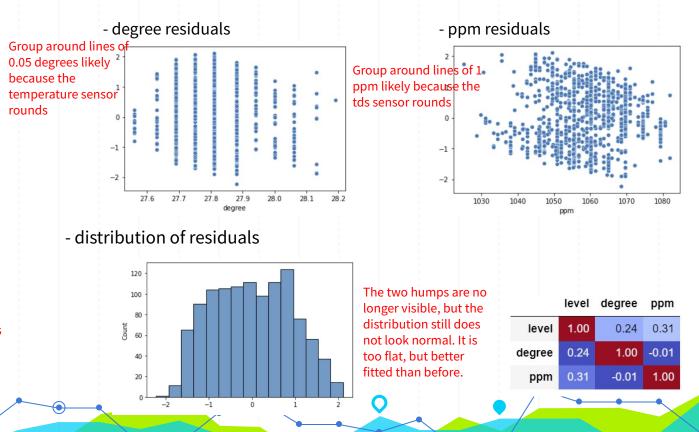
Linear Regression


Dep. Variable:	level	R-squared:	0.038
Model:	OLS	Adj. R-squared:	0.037
Method:	Least Squares	F-statistic:	47.79
Date:	Wed, 03 Aug 2022	Prob (F-statistic):	7.61e-12
Time:	21:00:49	Log-Likelihood:	-1726.5
No. Observations:	1224	AIC:	3457.
Df Residuals:	1222	BIC:	3467.
Df Model:	1		
Covariance Type:	nonrobust		

OLS Regression Results

	coef		std e	err	t	P> t	I.	[0.02	25	0.975]
Intercept	-4.7	465	1.773	3	-2.678	0.00	8	-8.22	24	-1.269
ppm	0.01	16	0.002	2	6.913	0.00	9	0.008	3	0.015
Omnibus:		581.15	53	Durbin	-Watson:		0.19	6		
Prob(Omnibus)):	0.000		Jarque	e-Bera (JB)	:	67.8	78		
Skew:		-0.102	2	Prob(J	IB):		1.82	e-15		
Kurtosis:		1.865		Cond.	No.		6.59	e+04		

Data Analysis


Data Analysis

Cleaned Data

- linear regression

Dep. V	/ariable:			level	F	R-squared:	0.15	55
	Model:			OLS	Adj. F	R-squared:	0.15	53
	Method:	Le	east S	quares		F-statistic:	101	.2
	Date:	Wed,	03 Au	g 2022	Prob (F	-statistic):	4.36e-4	1
	Time:		11	:47:14	Log-L	ikelihood:	-1481	.3
No. Obser	vations:			1110		AIC:	296	9.
Df Re	siduals:			1107		BIC:	298	4.
D	f Model:			2				
Covarian	ce Type:		nor	robust				
	со	ef std	err	t	P> t	[0.025	0.975]	
Intercept	-100.027	78 8.	941	-11.187	0.000	-117.572	-82.484	
ppm	0.032	22 0.	003	11.324	0.000	0.027	0.038	
degree	2.643	33 0.	301	8.774	0.000	2.052	3.234	
Om	nibus:	165.959	D	urbin-W	atson:	0.286		
Prob(Omn	ibus):	0.000	Jar	que-Ber	a (JB):	40.558		
	Skew:	0.068		Pro	b(JB):	1.56e-09		
Ku	rtosis:	2.073		Cor	nd. No.	3.43e+05		

The R-squared value is now 0.155, which is higher than before.

Future Opportunities

Possible Improvements

Dashboard

- Make completely live (only updated when reloaded)
- Make the dashboard accessible

Analysis

- Find a better way to
- adjust the pH
 Prevent the rounding of sensor values
- Train with multiple groups instead of just one with 80% of the data

Receiver

- Remove database shutdown on bad data
- Continuously write logs, don't reset them.
- Find LoRa serial port automatically
- Neater cmd line output

Purpose

To program the final server communication and explore the collected data in meaningful ways by processing, visualizing & analyzing the data, and by making conclusions & informative models.

Project Goals

The goals of the project are to finish the chain of data communication and visualize/analyze that collected data. To do this, we first receive serial data from LoRa to the server, then create map plots, datatables, and line graphs for data visualization, and then do exploratory data analysis to analyze the data.

Procedures

- 1. Set up base station by installing Linux on server and 3D printing hardware protective cases
- 2. Send sensor data from LoRa microcontroller to populate the server SQLite database
- 3. Data visualization use Pandas to access the SOL database and create Plotly formatted dataframe. Used Plotly Dash library to create datatable. scatterplot map. and line graphs
- 4. Data analysis use exploratory data analysis. K-means clustering, linear regression, ANOVA, goodness of fit to analyze data

Hacking for Oceans: Data Analysis & Visualization

Tanmayi Dasari, Sebastian Hazlett, Claire Lee, Dorothy Zhang, Alex Miller

Abstract

Oceans cover 70% of the surface of the Earth. It is important to monitor and understand these large bodies. Cluster 13 is designing and testing an autonomous vessel to remotely track and record water quality. Our group was responsible for capturing and storing pH, temperature, total dissolved solids. and location in real time into an onshore database. Then we programmed a web-based dashboard that included a map plot, line graphs, and a datatable. The dashboard updated as new data arrived. We used exploratory data analysis, and linear regression to visualize our results such that we could find patterns and derive conclusions about the water in Lake Miramar. We found that none of the . measurements had an extremely high correlation with each other. When developed a model to predict the pH based on temperature and total dissolved solids. We evaluated the model for Goodness of Fit. Some of the assumptions may not hold. Consequently, we cleaned the data for the to remove anomalous records. The R-squared value of the new model was more than three times higher than before, but the model assumptions did not improve.

Challenges

Before cleaning the data, pH levels ranged from 16 to 18 on a 14 point scale and some values included jumbled letters and symbols for when the arduino was unable to properly relay information. After testing the lake water in the lab, the Data Acquisition team was able to find that the pH should be around 8. Consequently, we subtracted 9 from each pH data point to try and normalize our data around the 8 pH range. We also got rid of any faulty data points and converted the timestamp from a string to datetime and the measurements we took to float64. We also made sure to convert the timezone from the default GMT to PDT.

Acknowledgements

with datatable.

line graphs

20004

30002

20000

2222

9994

I. Michael Tritchler Ivan Ferrier Dallas Rodriguez Melody Gill Devanshi lain

Fig 3: pairplot comparing the three

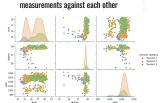
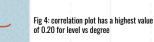
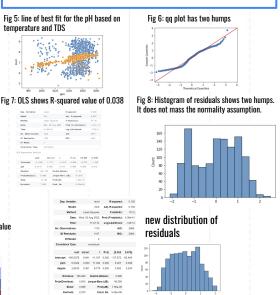



Fig 2: pairplot comparing the three

FDA:


measurements against each other

	level	degree	ppm
level	1.00	0.20	0.19
degree		1.00	
nnm	B 19	-0.03	1.66

Results

We cleaned the data to get rid of faulty data, converted the timestamps from a string to datetime, our measurements to floats, and also converted the timestamps to reflect our PDT time. Using the pH from the Data Acquisition Team, we subtracted 9 from the pH data points to more accurately normalize the pH around the correct pH of 8. We then filtered to only include the datapoint from when the buoy was in the water by only including pH values above 4. We then created and analyzed the data using pairplots, correlation plots, and mapbox. To analyze the goodness of fit, we created a linear regression model, og plot, and normality test. We found that the Independence Assumption and Normality Assumption didn't appear to hold, but the Constant of Variance assumption and Mean Zero Assumption did. We cleaned the data to ignore the values in this smaller hump to see if that model would be better and ran the test again. The R-squared value went from around 4 to 15 percent, so using the dataset that was cleaned more may be a better model. In the end, however, it seems that none of our models were ideal for predicting the pH based on temperature and total dissolved solids

THANK YOU!

Special thanks to Professor Jack Silberman, J. Michael Tritchler, Ivan Ferrier, Dallas Rodriguez, Melody Gill, and Devanshi Jain